Full Line Catalog

Vishay Cera-Mite

Application Data, Ceramic Disc Capacitors 1.0 Picofarad to 0.1 Microfarad

RELIABLE SOLUTIONS IN EMI/RFI, DECOUPLING, DV/DT & DI/DT, SNUBBERS, BY-PASS, ESR & ESL. EXCELLENT FOR HIGH VOLTAGE & SWITCHING POWER SUPPLIES.

MARKING INFORMATION

Wire leaded DC rated, disc capacitors are marked with a code identifying the manufacturer, capacitance, tolerance, voltage, and type of ceramic.

Specialty types such as AC rated are marked as described in those sections.

	MAN IDEN "Cera- cation	UFACTURER TIFICATION Mite [®] " or the identifi- "CM."
СМ	T C (S	EMPERATURE OEFFICIENT See chart at right)
V5R (or C)		NCE TOLERANCE
	C = ± .25pF	$M = \pm 20\%$
,01 M	$D = \pm .5pr$	P = +100 - 0% Y = -20 + 50%
/1 K\/~ /	$K = \pm 10\%$	Z = -20 + 80%
	VOLTAG Rating norm age rating n voltage is m	E nally DC volts. AC volt- narked AC or ~ ;. If no narked, part is 500VDC.
	CAPACITAN Expressed in pic	CE cofarads or
	microfarads. Examples: 680 0047	= 680 picofarads. 7 = .0047 microfarads.
	OPTIONAL Lot Date Code	and/or Customer

Part Number are available options which may also be imprinted on the capacitor

TYPE OF CERAMIC (Temperature Coefficient)									
CAPACITANCE CHANGE OVER TEMP. RANGE PPM PER DEGREE C	N FC	MARKIN DR TEM 55° TO	G COD P. RAN(+125°C	E GE	ALTERNATE MARKING CODE	DIELECTRIC CLASS			
0 ± 30 (NPO)		C)G		A	I			
-750 ± 120 (N750)		U	2J		U	I			
-1000 ± 250 (N1000)		M	3K		V	I			
-1500 ± 250 (N1500)		P	3K		W	I			
-2200 ± 500 (N2200)		R	3L		Х	I			
-3300 ± 500 (N3300)		S	3L	Y	Ι				
-4700 ± 1000 (N4700)		T3	BM		Z	I & II*			
MAX. % CHANGE	+ 10° + 85°C	– 30° + 85°C	– 55° + 85°C	– 55° + 125°C	-	-			
± 4.7%	Z5E	Y5E	X5E	X7E	В	Ш			
± 7.5%	Z5F	Y5F	X5F	В	П				
± 10%	Z5P	Y5P	X5P	С	II				
± 15%	Z5R	Y5R	X5R	С	II or IV**				
± 22%	Z5S	Y5S	X5S	X7S	С	II or IV			
+22 - 56%	Z5U	Y5U	X5U	X7U	E	III			
+22 - 82%	Z5V	Y5V	X5V	X7V	F	III			

* N4700 is a transition material between Class I and II, and has characteristics of both. It is used for larger cap values: capacitance and DF measured at 1 kHz.

** Class IV uses same material as Class II, but is processed differently.

Application Data

Vishay Cera-Mite

Capacitance Change vs. Frequency

Capacitance Change vs. Temperature

Capacitance Decrease vs. D-C Voltage Bias

Ceramic Disc Capacitors as Snubbers

*Select R to limit dv/dt and di/dt to capacitor and semiconductor ratings. "Lossless" low dissipation factor discs are especially well suited for snubber service due to low self heating. See types 10TCU, 1DF0, 2DF0, and 3DF0.

CERAMIC DISC CAPACITOR APPLICATION NOTES

- HIGH K: For small size and higher values of capacitance, EIA 198D Class III, Z5U, Y5U, Y5V. This type is usually broad tolerance: $\pm 20\%$ or $\pm 80 - 20\%$.
- MODERATELY HIGH K: Materials are formulated to provide better capacitance stability . against change in temperature and voltage, but may be larger in size than the HIGH K types, especially in the higher capacitance values, EIA 198D Class II, X5F, X7R, X7S. Usually tighter tolerance. ±10%at 25°C. Higher dv/dt rating
- LOW K FORMULATIONS FOR PRECISION CAPACITORS: Ultra stable capacitance over broadest temperature, frequency and voltage variation, EIA Class I, NP0, U2J, R3L and S3L. Usually ±5% tolerance. Highest dv/dt rating.
- HYPERCON construction gives highest capacitance density. Made by forming a thin dielectric barrier layer at each electrode surface. They exhibit very high capacitance and good temperature stability. Improvements have extended range to 100 VDC. EIA 198D Class IV.
- CAPACITANCE MEASUREMENTS: Class IV dielectric are conducted at 50 to 100 millivolts, 1000Hz. All others are measured at 1.0 volts, Class II & III at 1 kHz. Class I at 1 MHz.

FREQUENCY:

- Operating frequency range is determined primarily by capacitor value and self resonance ٠ due to lead inductance. This typically occurs at 500 MHz for 100 pF, decreasing to 50 MHz at .01 µF and 10 MHz at 0.1 µF.
- Class III and IV, typical applications are power and logic bus coupling and decoupling, and broad-band bypass filtering. Class I and II are chosen for frequency discriminating filters, d-c blocking, reference circuits, and similar circuits requiring close tolerance and stability.

TEMPERATURE:

- Capacitors are designed for service temperatures of -55°C to +105°C or greater. The limiting factor is the life of the polymer coating. Ceramic discs are not injured by short time exposure up to 125°C.
- In applications where there is continuous heat dissipation in the capacitor, such as in snubber networks for power semiconductors, the case temperature rise should be limited to 30°C. Class I, II and III may be used for snubber service. Low Dissipation Factor capacitors are especially well suited.

VOLTAGE:

- The extensive range of d-c voltage ratings available allows selection of the • appropriate device to minimize d-c voltage effects in the circuit.
- A-C voltage ratings for capacitors up to 1000 volts applies to applications where energy and current are limited by circuit impedance. 1000 ohms impedance at the maximum a-c voltage rating is adequate.
 - Ratings apply to 50 kHz. Above 50 kHz derate a-c voltage by (freg./50kHz)².

CURRENT:

A

 For sinusoidal applied voltages: I_{RMS}= 7VfC where V = rms Voltage; f =frequency; C = farads. Power dissipation may be approximated by Watts = $(I_{RMS})^2$ x Effective Series Resistance (ESR).

pproximate ESR values: Class I, ESR = $\frac{100}{C(pF) f(MH)}$	Ex.: 10pF ESR = 10 ohms at 1 MHz
Class II or III, ESR = $\frac{1}{C(\mu F) f(kF)}$	z) Ex.: .001 µF ESR = 100 ohms at 10kHz
Ex.: 100V 50kHz .001µF	$I_{RMS} = 7 \times 100 \times (50 \times 10^3) \times (.001 \times 10^{-6}) = 35 \text{ mA}$ Power Dissipation = $(35 \times 10^{-3})^2 \times 20 = .024$ watts

• For nonsinusoidal applied voltage (repetitive transient pulses) limit on peak current is: Ip = $\frac{dV}{dt}$ x C where V = volts; T = seconds; C = farads; approximate $\frac{dV}{dt}$ limits:

≤ 100pF = 10,000V/µs, Class I	100pF - 1,000pF =2,000V/µs, Class II & III
>100pF = 5,000V/µs, Class I	1000pF - 10,000pF = 1,000V/µs, Class II & III
<100pF = 5,000V/µs, Class II	>10,000pF = 500V/µs, Class II & III
	>10,000pF = 100V/µs, Class IV
Example: .001 μ F, Class II; Ip = $\frac{1}{2}$	$\frac{000}{1000}$ x (.001 x 10 ⁻⁶) = 1 ampere peak
	10-6

Note: Above calculations are typical. Actual circuit conditions may allow more or less current and voltage. Actual circuit test is recommended

Vishay Cera-Mite

High Voltage Disc Capacitors

Radial Lead Style - 2000 to 15,000 VDC Axial Lead Style - 10,000 to 30,000 VDC

φ - 20 AWG .032" (.81) except per Note 1. LO ~ (Thk - .100") except per Note 1. Note 1 #22 AWG .025" (.64) wire leads used on: 20GAP10 (LO = .07") 30GASS20 (LO = .08") 30GASS33 (LO = .10")

Vishay Cera-Mite High Voltage Capacitors are the choice of discriminating designers throughout the world. Our reputation for product quality and reliability is a result of continuous research in fine electrical ceramics, high temperature coatings, process controls and rigorous production testing.

The 2 and 3 kV parts are widely used in demanding applications such as snubbers, EMI/RFI filters, and switching power supplies. High voltage capacitors are also specified in lower voltage applications to withstand transient voltage and energy surges in accordance with FCC and IEEE standards.

APPLICATIONS:

- Lighting Ballasts
- Telecommunications
- Power Supplies

2000 VOLT, 10% AND 20% TOLERANCE

Application Range:

Up to 28	500 VD	C, 600	VRMS
----------	--------	--------	------

VAL	UE	CATALOG	MECH	IANICA	L (in)	TEMP.	
pF	TOL.	NUMBER	DIA.	THK.	L.S.	CHAR.	
100	K	20TST10	.330	.190	.250	X7R	
220	K	20TST22	.330	.180	.250	X7R	
330	K	20TST33	.330	.180	.250	X7R	
470	K	20TST47	.330	.170	.250	X7R	
560	K	20TST56	.330	.185	.250	X7R	
680	K	20TST68	.330	.170	.250	X7R	
1000	M	20GAD10	.330	.170	.250	Y5U	
1000	M	20TSSD10	.330	.175	.250	Y5S	
1000	K	20TSD10	.400	.175	.250	X7R	
1500	M	20GAD15	.330	.170	.250	Y5U	
1500	M	20TSSD15	.400	.170	.250	Y5S	
1500	K	20TSD15	.430	.160	.250	X7R	

3000 VOLT, 10% AND 20% TOLERANCE

 Application Range: Up to 4000 VDC, 1000 VRMS

VAI	IIE	CATALOG	MECI	MECHANICAL (in)				
pF	TOL.	NUMBER	DIA.	THK.	L.S.	CHAR.		
10	M	30GAQ10	.330	.210	.250	U2J		
12	Μ	30GAQ12	.330	.205	.250	U2J		
15	М	30GAQ15	.330	.180	.250	U2J		
22	Μ	30GAQ22	.330	.200	.250	R3L		
27	M	30GAQ27	.330	.190	.250	R3L		
33	M	30GAQ33	.330	.170	.250	R3L		
47	Μ	30GAQ47	.330	.230	.250	X7R		
56	Μ	30GAQ56	.330	.190	.250	X7R		
68	M	30GAQ68	.330	.200	.250	X7R		
100	Μ	30GAT10	.330	.180	.250	X7R		
150	M	30GAT15	.330	.190	.250	X7R		
220	Μ	30GAT22	.330	.175	.250	X7R		
270	Μ	30GAT27	.330	.180	.250	X7R		
330	Μ	30GAT33	.330	.175	.250	X7R		
390	Μ	30GAT39	.330	.175	.250	X7R		
470	Μ	30GAT47	.330	.175	.250	X7R		
680	M	30GAT68	.330	.175	.250	Y5U		

6000 VOLT, 20% TOLERANCE Application Range:

Up to 6000 VDC, 1500 VRMS

	CATALOG	MECHA	MECHANICAL (in)					
pF	NUMBER	DIA.	THK.	L.S.	CHAR.			
10	60GAQ10	.400	.220	.375	NP0			
22	60GAQ22	.460	.240	.375	U2J			
33	60GAQ33	.400	.230	.375	R3L			
47	60GAQ47	.460	.205	.375	R3L			
100	60GAT10	.400	.240	.375	X5F			

 Insulation Resistance: 10,000 MΩ minimum Dissipation Factor: 2.0% maximum

VAL	UE	CATALOG	MECH	ANICA	L (in)	TEMP.	VAL	UE	CATALOG	MECH	IANICA
pF	TOL.	NUMBER	DIA.	THK.	L.S.	CHAR.	pF	TOL.	NUMBER	DIA.	THK.
1800	Μ	20GAD18	.360	.170	.250	Z5U	3900	М	20GAD39	.490	.175
1800	M	20TSSD18	.430	.170	.250	Y5S	3900	Μ	20TSSD39	.620	.175
1800	K	20TSD18	.460	.170	.250	X7R	3900	Κ	20TSD39	.680	.170
2200	M	20GAD22	.400	.175	.250	Z5U	4700	Μ	20GAD47	.490	.170
2200	M	20TSSD22	.460	.170	.250	Y5S	4700	Μ	20TSSD47	.680	.175
2200	K	20TSD22	.460	.170	.250	X7R	4700	K	20TSD47	.680	.170
2700	M	20GAD27	.430	.175	.250	Z5U	5600	М	20TSSD56	.680	.170
2700	M	20TSSD27	.530	.175	.250	Y5S	6800	М	20GAD68	.560	.170
2700	K	20TSD27	.530	.170	.250	X7R	6800	М	20TSSD68	.720	.170
3300	M	20GAD33	.430	.175	.250	Z5U	.01uF	Μ	20GAS10	.680	.170
3300	M	20TSSD33	.530	.175	.250	Y5S	.01uF	Μ	20GASS10	.620	.170
3300	K	20TSD33	.530	.160	.250	X7R	.10uF	М	20GAP10	.950	.240

Insulation Resistance: 50,000 MΩ minimum

Dissipation Factor: 2.0% maximum

	•					
VALI	UE	CATALOG	MECI	L (in)	TEMP.	
pF	TOL.	NUMBER	DIA.	THK.	L.S.	CHAR.
680	K	30TST68	.330	.180	.250	X7R
1000	М	30GAD10	.330	.195	.250	Z5U
1000	М	30TSSD10	.400	.190	.250	Y5S
1000	K	30TSD10	.400	.175	.250	X7R
1500	М	30GAD15	.360	.190	.250	Z5U
1500	M	30TSSD15	.460	.190	.250	Y5S
1500	K	30TSD15	.490	.185	.250	X7R
1800	М	30GAD18	.400	.190	.250	Z5U
1800	M	30TSSD18	.490	.190	.250	Y5S
1800	K	30TSD18	.530	.185	.250	X7R
2200	M	30GAD22	.430	.190	.250	Z5U
2200	M	30TSSD22	.530	.190	.250	Y5S
2200	K	30TSD22	.530	.180	.250	X7R
2700	M	30GAD27	.460	.200	.250	Z5U
2700	М	30TSSD27	.560	.185	.250	Y5S
2700	K	30TSD27	.620	.185	.250	X7R
3300	M	30GAD33	490	185	.250	75U

4700	М	30TSSD47	.680	.185	.375	Y55
4700	Κ	30TSD47	.720	.175	.375	X7F
5600	Μ	30TSSD56	.790	.190	.375	Y55
6800	Μ	30GAD68	.680	.185	.375	Z5L
6800	Μ	30TSSD68	.900	.205	.375	Y55
6800	Κ	30TSD68	.900	.185	.375	X7F
8200	Μ	30GAD82	.680	.185	.375	Z5L
.01uF	М	30GAS10	.790	.185	.375	Z5L
.01uF	Μ	30GASS10	.720	.185	.375	Y5\
.02uF	М	30GASS20	.720	.240	.375	Z5L
.033uF	Μ	30GASS33	.900	.240	.375	Z5L

Insulation Resistance: 75,000 MΩ minimum • Dissipation Factor: 2.0% maximum

L (in)		TEMP	VALUE CATALOG		MECH	IANICAL	(in)	TEMP
Κ.	L.S.	CHAR.	pF	NUMBER	DIA.	THK.	L.S.	CHAR.
0	.375	NP0	220	60GAT22	.400	.265	.375	X5F
0	.375	U2J	330	60GAT33	.400	.260	.375	X5S
0	.375	R3L	470	60GAT47	.400	.265	.375	Y5U
5	.375	R3L	560	60GAT56	.400	.240	.375	Y5U
0	.375	X5F	1000	60GAD10	.400	.270	.375	Z5U

564C Series Dielectric Strength: 10,500 VDC, 3000 VRMS

/AI UF	CATALOG	MECH	TEMP		
pF	NUMBER	DIA.	THK.	L.S.	CHAR.
1500	60GAD15	.460	.280	.375	Z5U
2200	60GAD22	.530	.240	.375	Z5U
3300	60GAD33	.620	.260	.375	Z5U
4700	60GAD47	.790	.260	.375	Z5U
01uF	60GAS10	.950	.250	.375	Z5U

Document Number: 23084 Revision 14-May-02

564C Series Dielectric Strength: 3500 VDC, 1000 VRMS

564C Series

TEMP.

CHAR.

Y5S

X7R

Z5U

Y5S

X7R

Z5U

Dielectric Strength:

.375

.375

.375

.375

.375

5250 VDC, 1500 VRMS

MECHANICAL (in)

DIA. THK. L.S.

.185

.620 .185

.620 .170

.530 .185

.680 .185

.720

.620 .195 .375

VALUE		CATALOG	MECH	TEMP.		
pF	TOL.	NUMBER	DIA.	THK.	L.S.	CHAR.
900	М	20GAD39	.490	.175	.250	Z5U
900	М	20TSSD39	.620	.175	.250	Y5S
900	K	20TSD39	.680	.170	.250	X7R
700	M	20GAD47	.490	.170	.250	Z5U
700	М	20TSSD47	.680	.175	.375	Y5S
700	K	20TSD47	.680	.170	.375	X7R
600	М	20TSSD56	.680	.170	.375	Y5S
800	М	20GAD68	.560	.170	.375	Z5U
800	M	20TSSD68	.720	.170	.375	Y5S
1uF	М	20GAS10	.680	.170	.375	Z5U
1uF	М	20GASS10	.620	.170	.375	Y5V
0uF	M	20GAP10	.950	.240	.375	Y5V

CATALOG NUMBER

30TSSD33

30TSD33

30GAD39

30TSSD39

30TSD39

30GAD47

VALUE

3300

3300 Κ

3900 Μ

3900

3900 Κ

TOI рF

Μ

Μ

M 4700

Custom Capacitor Capability

Vishay Cera-Mite

561 AND 564 CLASS I SERIES ELECTRICAL OPTIONS (Precision and over 50 kHz)

	RANGE OF CAPACITANCE VALUES (PICOFARADS)										
CERAMIC TYPE	500 VOLT .250" TO .680" (6.4 TO 17mm)	1000 VOLT .250" TO .760" (6.4 TO 19mm)	2000 VOLT .330" TO .900" (8.4 TO 23mm)	3000 VOLT .330" TO .900" (8.4 TO 23mm)	TOLERANCE CODES						
NP0	10 - 390	1 - 330	1 - 270	1 -180	C, D, J, K						
N750	47 - 680	22 - 470	10 - 330	10 - 270	J, K						
N1000	56 - 820	33 - 560	15 - 390	10 - 330	J, K						
N2200	68 - 750	56 - 680	33 - 560	22 - 470	J, K						
N3300	100 -1000	75 - 820	47 - 750	33 - 560	J, K						
N4700	n/A	330-5600	220-4700	100-3300	К, М						

Note: Vishay Cera-Mite also offers capacitors in N030, N080, N150, N220, N330, and N470 characteristics to serve special applications requiring TC matching. Values are available in the same range as NP0.

CUSTOM DISCS

Vishay Cera-Mite's most popular 12 Volt to 6,000 Volt values and constructions are shown as standard part numbers in this catalog. Many other values and lead styles are available. Complete capacitance ranges for various Class I, II and III ceramic materials are shown in the tables below. Various wire lead forms and packaging options are detailed on the next pages. Part numbers for custom capacitors consist of an 18-character designator assigned by our application engineering group. Vishay Cera-Mite will provide a certified outline drawing and complete part number covering custom options specified. Customer approval of the outline is usually requested to guarantee satisfaction.

All performance characteristics shown in this catalog apply to the options unless otherwise stated on the outline drawing.

562 AND 564 CLASS II & III SERIES ELECTRICAL OPTIONS

(General Purpose)

	RANGE OF CAPACITANCE VALUES (PICOFARADS)											
CERAMIC TYPE	500 Volt .250" to .950" (6.4 to 24mm)	1000 Volt .250" to .950" (6.4 to 24mm)	2000 Volt .330" to .950" (8.4 to 24mm)	3000 Volt .330" to .950" (8.4 to 24mm)	6000 Volt .400" to .900" (10.2 to 23mm)	TOL 500 V	ERANCE 0	CODES 2 to 6 KV				
X5F X5S X7R Y5U Z5U Y5V	200 - 22,000 400 - 22,000 500 - 22,000 1000 - 50,000 1500 - 100,000 2000 - 200,000	100 - 20,000 300 - 25,000 390 - 28,000 750 - 50,000 1000 -100,000 1500 -150,000	68 - 12,000 470 - 22,000 390 - 22,000 560 - 33,000 1000 - 47,000 1500 - 100,000	47 - 8,200 390 -15,000 290 - 15,000 390 - 33,000 680 - 33,000 1000 - 50,000	47 - 2200 220 - 3900 560 - 3900 470 - 6800 820 - 8200 N/A	K, M M K, M M M, Z Y, 7	K, M K, M K, M M M, Z M, Z	K, M K, M K, M M, Y M, Z M, Z				

Note: 100 Volt ratings are available in same ranges as 500 Volt.

CUSTOM PART NUMBER DESIGNATOR

General Method Used To Describe Radial Leaded Custom Disc Capacitors

Packaging Options

Vishay Cera-Mite

TAPE & REEL OPTIONS

Radial leaded parts may be ordered with Tape & Reel packaging by adding appropriate suffix code to part number.
Example: TGS10 QR (Suffix Code) defines: #22 AWG wire; Straight Lead Form; LS = 5mm; Tape & Reel per EIA 468B.

TAPE & REEL PACKAGING- PART NUMBER SUFFIX CODES				TAPE & REEL SUFFIX CODES FOR VARIOUS WIRE FORMS & SIZES												
TAPE & REEL FIGURE	LEAD SPACING "LS"	MAX. DIAM in.	. CAP ETER mm	TAPE & REEL (NOTE 1)	STF #20 AWG	FIG. 11 AIGHT W #22 AWG	VIRE #24 AWG	FIG STEEP #22 AWG	i. 12 PLE WIRE #24 AWG	Fi INLIN #20 AWG	G. 13 IE WIRE #22 AWG	FI STE #22 AWG	G. 14 P WIRE #24 AWG	F INSIDI #20 AWG	FIG. 15 E CRIMP #22 AWG	WIRE #24 AWG
A	5mm	.490	12.4	C-M EIA	QG QH	QA QR	QB QD	TK TR	WK TX	XA XB	ZA XN	VC VZ	VQ VE	RA RC	RE RR	RB LA
В	7.5mm	.530	13.5	C-M EIA	QP QS	QK QF	_	=	_	XG XH	ZC XR	=	_	RP RX	RK RL	_
С	10mm	.708	18.0	C-M EIA	QQ AP	QM QX	_	_	_	XJ XK	XS XT	_	_	RQ RJ	RM RU	_
D	7.5mm	.708	18.0	C-M EIA	QW AQ	QN QE	_	_	_	XL XM	XU XV	-	_	RW RV	RN RD	_

Wire Information : #20 AWG .032" (.81) Tinned Copper Wire #22 AWG .025" (.64) Tinned Copper Wire #24 AWG .020" (.51) Tinned Copper Clad Steel Wire

		Tape & Reel Packaging							
ITEM (DIMENSIONS IN MM)	CODE	FIG A LS=5mm P=12.7mm	FIG B LS=7.5mm P=15mm	FIG C LS=10mm P=25.4mm	FIG D LS=7.5mm P=30mm				
Pitch of component	Р	12.7	15.0	25.4	30.0				
Pitch of sprocket hole	P ₀	12.7 ± 0.3	15.0 ± 0.3	12.7 ± 0.3	15.0 ± 0.3				
Lead spacing	F	5.0 + 0.8 - 0.2	7.5 ±1.0	10.0 ± 1.0	7.5 ± 1.0				
Length from hole center to component center	P ₂	6.35 ± 1.3	7.5 ± 1.5	_	7.5 ± 1.5				
Length from hole center to lead	P ₁	3.85 ± 0.7	3.75 ± 1.0	7.7 ± 1.5	3.75 ± 1.0				
Body diameter	D	See	individual pr	oduct specil	fication				
Deviation along tape, left/right	Δs	0 ± 1.3 0 ± 2.0							
Carrier tape width	W		18.0	± 0.5					
Position of sprocket hole	W_1			9.0 ± 0.5					
Height (Fig 11) straight wire	н	20 +1.5 20 - 1.0	20 <mark>+1.5</mark> - 1.0	18 <mark>+2.0</mark> - 1.0	20 <mark>+1.5</mark> - 1.0				
Height (Fig 12-15) seating plane		16 ± 0.5	16 ± 0.5	16 ± 0.5	16 ± 0.5				
Protrusion length	P ₃		3.0 N	lax.					
Dia. of sprocket hole	D ₀		4.0	± 0.2					
Total tape thickness	t ₁		0.6	5 ± 0.3					
Total thickness, tape and lead wire	t ₂	1.5 Maximum							
Portion to cut in case of defect	L	11 Maximum							
Hold down tape width	W ₀	11.5 Minimum							
Hold down tape position	W_2	1.5 ± 1.5							

TAPE & REEL (EIA - 468-B)

EIA lead spacings for tape and reel are based on multiples of .100" (2.5mm) to coordinate with automatic insertion machinery and boards using .100" grid convention.

QA RE TK

Cera-Mite Standard

EIA-468B Standard

Note 1 Vishay Cera-Mite standard is a reverse reeled version of EIA 468B.

