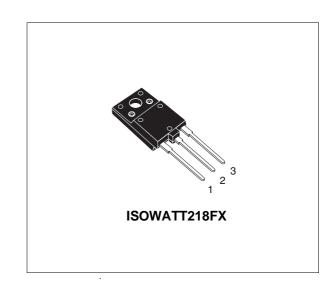
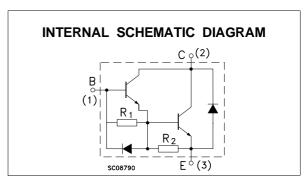


BU808DFX

HIGH VOLTAGE FAST-SWITCHING NPN POWER DARLINGTON TRANSISTOR


- STMicroelectronics PREFERRED SALESTYPE
- NPN MONOLITHIC DARLINGTON WITH INTEGRATED FREE-WHEELING DIODE
- HIGH VOLTAGE CAPABILITY (> 1400 V)
- HIGH DC CURRENT GAIN (TYP. 150)
- FULLY INSULATED PACKAGE (U.L. COMPLIANT) FOR EASY MOUNTING
- LOW BASE-DRIVE REQUIREMENTS
- DEDICATED APPLICATION NOTE AN1184


APPLICATIONS

 COST EFFECTIVE SOLUTION FOR HORIZONTAL DEFLECTION IN LOW END TV UP TO 21 INCHES.

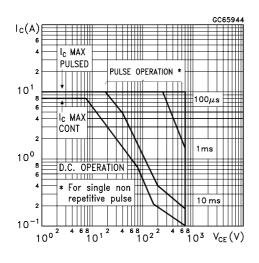
The BU808DFX is a NPN transistor in monolithic Darlington configuration. It is manufactured using Multiepitaxial Mesa technology for cost-effective high performance.

ABSOLUTE MAXIMUM RATINGS

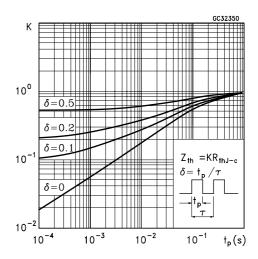
Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage (I _E = 0)	1400	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	700	V
V_{EBO}	Emitter-Base Voltage (I _C = 0)	5	V
Ic	Collector Current	8	Α
I _{CM}	Collector Peak Current (t _p < 5 ms)	10	Α
I _B	Base Current	3	Α
Івм	Base Peak Current (tp < 5 ms)	6	Α
P _{tot}	Total Dissipation at T _c = 25 °C	62	W
V _{isol}	Insulation Withstand Voltage (RMS) from All Three Leads to Exernal Heatsink	2500	V
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

April 2007 1/7

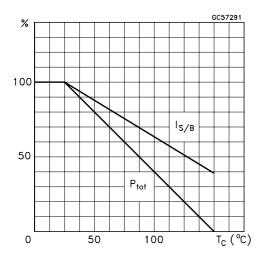
THERMAL DATA

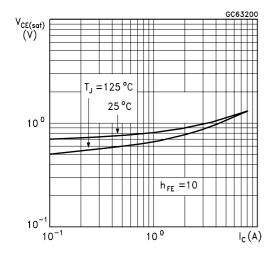

R _{thj-case} Thermal Resistance Junction-case	Max	2.02	°C/W	1
--	-----	------	------	---

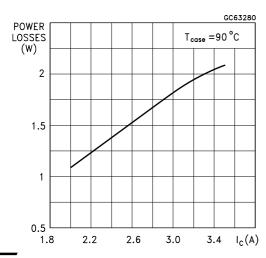
ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

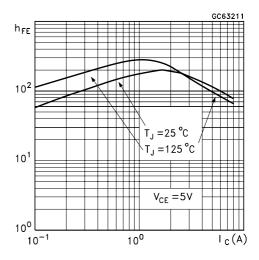

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 1400 V			400	μΑ
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 5 V			100	mA
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 5 A I _B = 0.5 A			1.6	٧
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 5 A I _B = 0.5 A			2.1	٧
h _{FE} *	DC Current Gain	$I_{C} = 5 \text{ A}$ $V_{CE} = 5 \text{ V}$ $I_{C} = 5 \text{ A}$ $V_{CE} = 5 \text{ V}$ $T_{j} = 100 ^{\circ}\text{C}$	60 20		230	
t _s	INDUCTIVE LOAD Storage Time Fall Time	$V_{CC} = 150 \text{ V}$ $I_{C} = 5 \text{ A}$ $I_{B1} = 0.5 \text{ A}$ $V_{BE(off)} = -5 \text{ V}$		2.3 0.2		μs μs
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time	$V_{CC} = 150 \text{ V}$ $I_{C} = 5 \text{ A}$ $I_{B1} = 0.5 \text{ A}$ $V_{BE(off)} = -5 \text{ V}$ $T_{j} = 100 ^{\circ}\text{C}$		2 0.8		μs μs
VF	Diode Forward Voltage	I _F = 5 A			3	٧

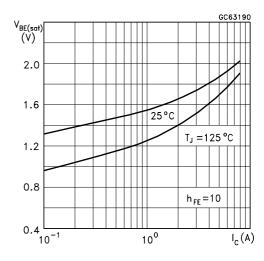
^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

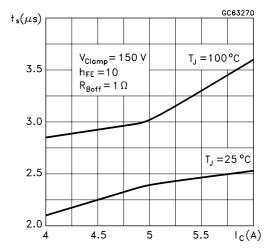

Safe Operating Area


Thermal Impedance

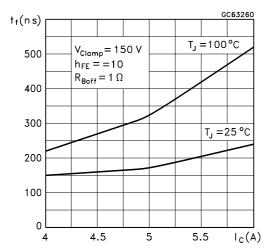

Derating Curve


Collector Emitter Saturation Voltage


Power Losses at 16 KHz

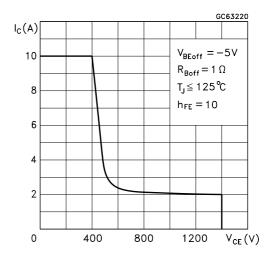

DC Current Gain

Base Emitter Saturation Voltage



Switching Time Inductive Load at 16KHz

Switching Time Inductive Load at 16KHZ



BASE DRIVE INFORMATION

In order to saturate the power switch and reduce conduction losses, adequate direct base current l_{B1} has to be provided for the lowest gain h_{FE} at 100 $^{\circ}$ C (line scan phase). On the other hand, negative base current l_{B2} must be provided to turn off the power transistor (retrace phase).

Most of the dissipation, in the deflection application, occurs at switch-off. Therefore it is essential to determine the value of I_{B2} which minimizes power losses, fall time t_f and, consequently, T_j . A new set of curves have been defined to give total power losses, t_s and t_f as a function of I_{B2} at both 16 KHz scanning frequencies for choosing the optimum negative

Reverse Biased SOA

drive. The test circuit is illustrated in figure 1.

Inductance L_1 serves to control the slope of the negative base current I_{B2} to recombine the excess carrier in the collector when base current is still present, this would avoid any tailing phenomenon in the collector current.

The values of L and C are calculated from the following equations:

$$\frac{1}{2} L (I_C)^2 = \frac{1}{2} C (V_{CEfly})^2$$
 $\omega = 2 \pi f = \frac{1}{\sqrt{LC}}$

Where I_C = operating collector current, V_{CEfly} = flyback voltage, f= frequency of oscillation during retrace.

Figure 1: Inductive Load Switching Test Circuits.

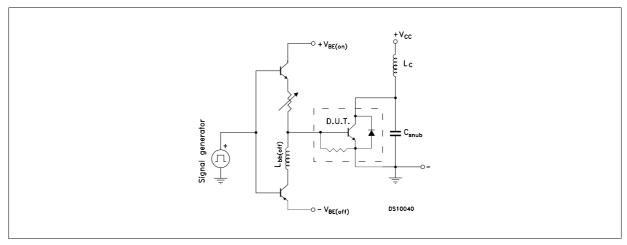
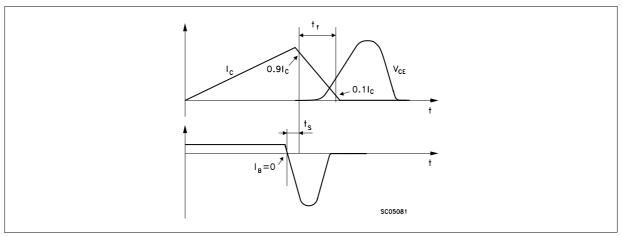
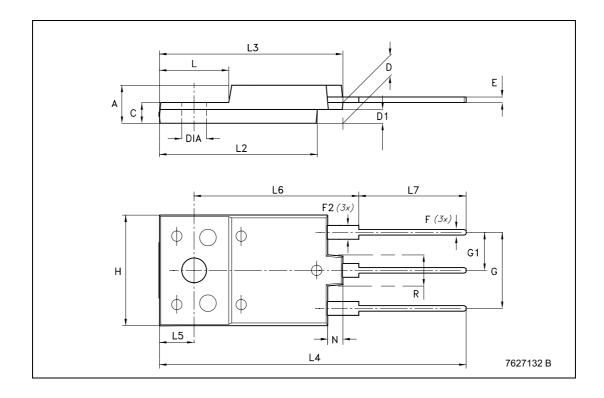




Figure 2: Switching Waveforms in a Deflection Circuit

ISOWATT218FX MECHANICAL DATA

DIM.	mm.			
DIIVI.	MIN.	TYP	MAX.	
Α	5.30		5.70	
С	2.80		3.20	
D	3.10		3.50	
D1	1.80		2.20	
E	0.80		1.10	
F	0.65		0.95	
F2	1.80		2.20	
G	10.30		11.50	
G1		5.45		
Н	15.30		15.70	
L	9		10.20	
L2	22.80		23.20	
L3	26.30		26.70	
L4	43.20		44.40	
L5	4.30		4.70	
L6	24.30		24.70	
L7	14.60		15	
N	1.80		2.20	
R	3.80		4.20	
Dia	3.40		3.80	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com