DM74LS293 4-Bit Binary Counter

General Description

The 'LS293 counter is electrically and functionally identical to the 'LS93. Only the arrangement of the terminals has been changed for the 'LS293.
Each of these monolithic counters contains four masterslave flip-flops and additional gating to provide a divide-bytwo counter and a three-stage binary counter for which the count cycle length is divide-by-eight.
All of these counters have a gated zero reset.

To use the maximum count length (four-bit binary) of these counters, the B input is connected to the Q_{A} output. The input count pulses are applied to input A and the outputs are as described in the appropriate function table.

Features

- GND and $V_{C C}$ on Corner Pins (Pins 7 and 14 respectively)
- Typical power dissipation 45 mW
- Count frequency 42 MHz

Connection Diagram

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM74LS293			Units
			Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current				-0.4	mA
lOL	Low Level Output Current				8	mA
fCLK	Clock Frequency (Note 1)	A to Q_{A}	0		32	MHz
		B to Q_{B}	0		16	
${ }_{\text {f CLK }}$	Clock Frequency (Note 2)	A to Q_{A}	0		20	MHz
		B to Q_{B}	0		10	
tw	Pulse Width (Note 6)	A	15			ns
		B	30			
		Reset	15			
$t_{\text {REL }}$	Reset Release Time (Note 6)		25			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 3)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.7	3.4		V
V ${ }_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$			0.35	0.5	V
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=7 V \end{aligned}$	Reset			0.1	mA
			A			0.2	
			B			0.2	
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$	Reset			20	$\mu \mathrm{A}$
			A			40	
			B			40	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	Reset			-0.4	mA
			A			-2.4	
			B			-1.6	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 4) } \end{aligned}$		-20		-100	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 5)			9	15	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {max }}$	Maximum Clock Frequency	A to Q_{A}	32		20		MHz
		B to Q_{B}	16		10		
tpLH	Propagation Delay Time Low to High Level Output	A to Q_{A}		16		23	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{A}		18		30	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{D}		70		87	ns
tPHL	Propagation Delay Time High to Low Level Output	A to Q_{D}		70		93	ns
$\mathrm{tplH}^{\text {L }}$	Propagation Delay Time Low to High Level Output	B to Q_{B}		16		23	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{B}		21		35	ns
$\mathrm{tpLH}^{\text {l }}$	Propagation Delay Time Low to High Level Output	B to Q_{C}		32		48	ns
tpHL	Propagation Delay Time High to Low Level Output	B to Q_{C}		35		53	ns
tpLH	Propagation Delay Time Low to High Level Output	B to Q_{D}		51		71	ns
tPHL	Propagation Delay Time High to Low Level Output	B to Q_{D}		51		71	ns
tpHL	Propagation Delay Time High to Low Level Output	SET-0 to Any Q		40		53	ns

Note 1: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 5: ICC is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V and all other inputs grounded.
Note 6: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Function Tables
Count Sequence (See Note C)

Count	Outputs			
	Q_{D}	Q_{C}	Q_{B}	$Q_{\text {A }}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H
10	H	L	H	L
11	H	L	H	H
12	H	H	L	L
13	H	H	L	H
14	H	H	H	L
15	H	H	H	H

Reset/Count Truth Table

Reset Inputs		Outputs			
RO(1)	RO(2)	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
H	H	L	L	L	L
L	X		COUNT		
X	L		COUNT		

$H=$ High Level, $L=$ Low Level, $X=$ Don't Care.

Note C: Output Q_{A} is connected to input B.

Logic Diagram

