Signetics

74195, LS195A, S195 Shift Registers

4-Bit Parallel Access Shift Register Product Specification

Logic Products

FEATURES

- Buffered Clock and Control inputs
- Shift right and parallel load capability
- J-K (D) inputs to first stage
- Complement output from last stage
- Asynchronous Master Reset

DESCRIPTION

The functional characteristics of the '195 4-Bit Parallel Access Shift register are indicated in the Logic Diagram and Function Table. The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial-to-parallel, or parallel-to-serial data transfers at very high speeds.

The '195 operates on two primary modes: shift right $(Q_0 \rightarrow Q_1)$ and parallel load, which are controlled by the state of the Parallel Enable (PE) input. Serial data enters the first flip-flop (Q_0) via the J and \overline{K} inputs when the PE input is HIGH, and is shifted 1 bit in the direction $Q_0 \rightarrow Q_1 \rightarrow Q_2 \rightarrow Q_3$ following each LOW-to-HIGH clock transition.

PIN CONFIGURATION

TYPE	TYPICAL fMAX	TYPICAL SUPPLY CURRENT			
74195	39MHz	39mA			
74LS195A	39MHz	14mA			
74S195	105MHz	70mA			

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC} = 5V \pm 5\%$; $T_A = 0^{\circ}C$ to $+70^{\circ}C$
Plastic DIP	N74195N, N74LS195N, N74S195N
Plastic SO-16	N74LS195AD

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	745	74LS
All	Inputs	1ul	1Sul	1LSul
All	Outputs	10ul	10Sul	10LSul

NOTE:

Where a 74 unit load (ul) is understood to be 40 μ A I $_{|H}$ and -1.6mA I $_{|L}$, a 74S unit load (Sul) is 50 μ A I $_{|H}$ and -2.0mA I $_{|L}$, and 74LS unit load (LSul) is 20 μ A I $_{|H}$ and -0.4mA I $_{|L}$.

The J and \overline{K} inputs provide the flexibility of the JK type input for special applications and, by tying the two pins together, the simple D type input for general applications. The device appears as four

LOGIC SYMBOL

common clocked D flip-flops when the $\overline{\text{PE}}$ input is LOW. After the LOW-to-HIGH clock transition, data on the parallel inputs (D_0-D_3) is transferred to the respective Q_0-Q_3 outputs.

LOGIC SYMBOL (IEEE/IEC)

Shift Registers

74195, LS195A, S195

Shift left operation $(Q_3 \rightarrow Q_2)$ can be achieved by tying the Qn outputs to the Dn - 1) inputs and holding the PE input low.

All parallel and serial data transfers are synchronous, occuring after each LOW-to-HIGH clock transition. The '195 utilizes edge-triggering, therefore, there is no restriction on the activity of the J, K, Dn, and PE inputs for logic operation, other than the set-up and release time requirements.

A LOW on the asynchronous Master Reset (MR) input sets all Q outputs LOW, independent of any other input condition. The MR on the 54/74195 is gated with the clock. Therefore, the LOW-to-HIGH MR transition should only occur while the clock is LOW to avoid false clocking on the 54/74195.

LOGIC DIAGRAM

MODE SELECT - FUNCTION TABLE

OPERATING MODES	INPUTS					OUTPUTS					
OPERATING MODES	MR	СР	PE	J	K	Dn	Qo	Q ₁	Q ₂	Q ₃	\overline{Q}_3
Asynchronous reset	L	Х	Х	Х	X	×	L	L	L	L	н
Shift, set first stage	Н	1	h	h	h	×	Н	90	q ₁	q ₂	\bar{q}_2
Shift, reset first stage	H	1	h	1	l l	X	L	q ₀	q ₁	q_2	92
Shift, toggle first stage	Н	↑ î	h	h	1	Х	qo	q_0	q ₁	q_2	q ₂
Shift, retain first stage	Н	1	h	1	h	Х	q ₀	qo	q ₁	q_2	q ₂
Parallel load	н	1	1	×	х	dn	dn	d₁	d ₂	d ₃	\bar{d}_3

H = HIGH voltage level.

L = LOW voltage level.

X = Don't care.

t = LOW voltage level one set-up time prior to the LOW-to-HIGH.clock transition.

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition.

dn(qn) = Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW-to-HIGH clock transition.

^{1 =} LOW-to-HIGH clock transition.

Shift Registers

74195, LS195A, S195

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74	UNIT		
V _{CC}	Supply voltage	7.0	7.0	7.0	V
VIN	Input voltage	-0.5 to +5.5	-0.5 to +7.0	-0.5 to +5.5	V
IIN	Input current	-30 to +5	-30 to +1	-30 to +5	mA
V _{OUT}	Voltage applied to output in HIGH output state	-0.5 to +V _{CC}	-0.5 to +V _{CC}	-0.5 to +V _{CC}	٧
TA	Operating free-air temperature range		0 to 70		°C

RECOMMENDED OPERATING CONDITIONS

		74			74LS			748			
PARAMETER		Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	UNIT
V _{CC}	Supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	4.75	5.0	5.25	٧
VIH	HIGH-level input voltage	2.0			2.0			2.0			٧
VIL	LOW-level input voltage			+0.8			+0.8			+0.8	٧
l _{iK}	Input clamp current			-12			-18			-18	mA
I _{OH}	HIGH-level output current			-800			-400			-1000	μΑ
loL	LOW-level output current			16			8			20	mA
TA	Operating free-air temperature	0		70	0		70	0		70	°C

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

			· · · · · · · · · · · · · · · · · · ·		74195		7	4LS195	A	74S195			UNIT
PARAMETER		TEST CONDITIONS1		Min	Typ ²	Max	Min	Typ ²	Max	Min	Typ ²	Max	
V _{OH}	HIGH-level output voltage	V _{CC} = MIN, V _{IH} I _{IL} = MAX, I _{OH}		2.4	3.4		2.7	3.4		2.7	3.4		٧
.,	LOW-level	V _{CC} = MIN,	I _{OL} = MAX		0.2	0.4		0.35	0.5			0.5	٧
V _{OL}	output voltage	$V_{IH} = MIN,$ $V_{IL} = MAX$	I _{OL} = 4mA (74LS)					0.25	0.4				٧
Vik	Input clamp voltage	V _{CC} = MIN, I _i =	l _{IK}			-1.5			-1.5			-1.2	٧
180	Input current	.,	V _I = 5.5V			1.0						1.0	mA
l _l	at maximum input voltage	V _{CC} = MAX	V ₁ = 7.0V						0.1				mA
	HIGH-level	V - MAY	V _i = 2.4V			40							μΑ
Ιн	input current	V _{CC} = MAX	V _I = 2.7V						20			50	μА
	LOW-level	V - MAY	V ₁ = 0.4V			-1.6			-0.4				mA
IL	input current V _{CC} = MAX	V _{CC} = MAX	V _i = 0.5V									-2	mA
los	Short-circuit output current ³	V _{CC} = MAX		-18		-57	-20		-100	-40		-100	mA
lcc	Supply current ⁴ (total)	V _{CC} = MAX			39	63		14	21		70	109	mA

- 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
- 2. All typical values are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. 3. I_{OS} is tested with $V_{OUT} = +0.5V$ and $V_{CC} = V_{CC}$ MAX +0.5V. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
- 4. With all outputs open, PE grounded, and 4.5V applied to the J, K, and Data inputs, ICC is measured by applying a momentary ground, followed by 4.5V to MR, and then a momentary ground, followed by 4.5V to clock.

74195, LS195A, S195

AC ELECTRICAL CHARACTERISTICS TA = 25°C, VCC = 5.0V

			74 $C_L = 15pF, R_L = 400\Omega$		74	4LS	7-		
	PARAMETER	TEST CONDITIONS			$C_L = 15pF, R_L = 2k\Omega$		C _L = 15pF,	UNIT	
			Min	Max	Min	Max	Min	Max	
f _{MAX}	Maximum clock frequency	Waveform 1	30		30		70		MHz
t _{PLH} t _{PHL}	Propagation delay Clock to output	Waveform 1		22 26		22 26		12 16.5	ns
t _{PHL}	Propagation delay MR to output	Waveform 2		30		30		18.5	ns

NOTE:

Per industry convention, f_{MAX} is the worst case value of the maximum device operating frequency with no constraints on t_r, t_f, pulse width or duty cycle.

AC SET-UP REQUIREMENTS TA = 25°C, VCC = 5.0V

		TEST SOURITIONS	74		74LS		74S		J
	PARAMETER	TEST CONDITIONS	Min	Max	Min	Max	Min	Max	UNIT
t _W	Clock pulse width	Waveform 1	16		16		7		ns
tw	Master Reset pulse width	Waveform 2	12		12		12		ns
ts	Set-up time, J, K and data to clock	Waveform 3	20		15		5.0		ns
t _h	Hold time, J, K and data to clock	Waveform 3	0		0		3.0		ns
ts	Set-up time, PE to clock	Waveform 4	25		25		11		ns
th	Hold time, PE to clock	Waveform 4	0		0		0		ns
t _{rec}	Recovery time, MR to clock	Waveform 2	25		25		9.0		ns

AC WAVEFORMS

Shift Registers

74195, LS195A, S195

TEST CIRCUITS AND WAVEFORMS

 $V_{\rm M}$ = 1.3V for 74LS; $V_{\rm M}$ = 1.5V for all other TTL families.

Test Circuit For 74 Totem-Pole Outputs

DEFINITIONS

 R_L = Load resistor to V_{CC} ; see AC CHARACTERISTICS for value. CL = Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

RT = Termination resistance should be equal to ZOUT of Pulse Generators.

D = Diodes are 1N916, 1N3064, or equivalent.

 $t_{TLH},\,t_{THL}$ Values should be less than or equal to the table entries.

Input Pulse Definition

	INPUT PULSE REQUIREMENTS										
FAMILY	Amplitude	Rep. Rate	Pulse Width	tTLH	tTHL						
74	3.0V	1MHz	500ns	7ns	7ns						
74LS	3.0V	1MHz	500ns	15ns	6ns						
74S	3.0V	1MHz	500ns	2.5ns	2.5ns						